If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+23^2=29^2
We move all terms to the left:
a^2+23^2-(29^2)=0
We add all the numbers together, and all the variables
a^2-312=0
a = 1; b = 0; c = -312;
Δ = b2-4ac
Δ = 02-4·1·(-312)
Δ = 1248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1248}=\sqrt{16*78}=\sqrt{16}*\sqrt{78}=4\sqrt{78}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{78}}{2*1}=\frac{0-4\sqrt{78}}{2} =-\frac{4\sqrt{78}}{2} =-2\sqrt{78} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{78}}{2*1}=\frac{0+4\sqrt{78}}{2} =\frac{4\sqrt{78}}{2} =2\sqrt{78} $
| 3(b+18)=84 | | v/10+29=32 | | x+(-45)=17 | | 8(m-93)=32 | | 12x+7-5x=21 | | 11=2w-9 | | 568+10.99x=298+22.99x | | 16=j/3+14 | | 14^2+b^2=23^2 | | x/10=-101 | | 5^(x-3)=2 | | -6+10k=94 | | 16 = j3+ 14 | | 0-5x=24 | | 3x-2x+5=2(x+24) | | -4+4k=36 | | 2x^+3×+1=20 | | 6−6x=−24 | | m–55/3= 9 | | 3x-2(2x-5)=2(x=3)-8 | | m–553= 9 | | m-55/3=9 | | 3/4(20y−8)+5=1/2y+1/4(20y+8) | | 23^2+b^2=14^2 | | -8h=24 | | 3y/8-7=y/2-8 | | -8=12x=-68 | | x/75+95=96 | | 3c-16=2 | | 35b^2+19b-24=0 | | 3x*5x=6 | | a^2+48^2=60^2 |